БАНК СЕКТОРИДА ФИРИБГАРЛИККА ҚАРШИ КУРАШИШДА СУНЪИЙ ИНТЕЛЛЕКТНИНГ ЎРНИ
DOI:
https://doi.org/10.55439/INS/vol2_iss3/304##article.subject##:
фирибгарлик, банк, сунъий интеллект, алгоритмлар, машинваий ўрганиш, финтех##article.abstract##
Рақамли банк хизматларининг жадал суръатларда ривожланиб бориши мураккаб фирибгарлик турларини ўсишига олиб келди, бу эса фирибгаликка қарши курашишда инновацион методологияларига бўлган эҳтиёжни келтириб чиқарди. Ушбу тадқиқот банк секторида фирибгарликни аниқлашда сунъий интеллектнинг (СИ) қўлланилишини, ривожланган ва ривожланаётган бозорлардаги банк секторидаги ҳолатига эътибор қаратади. Тадқиқотда фирибгарлик ҳолатларини аниқлаш самарадорлигини оширишда соҳа мутахассислари фикрлари ўрганилган. Машинавий ўрганиш, табиий тилни қайта ишлаш технологиялари транзакциалардаги аномалияларни аниқлаш ва сохта ижобий натижаларни камайтиришда эришган кўрсаткичлари баҳоланади.
References
West J and Bhattacharya M (2016), “Intelligent financial fraud detection: A comprehensive review,” Computers and Security, vol. 57, pp. 47–66, doi: 10.1016/j.cose.2015.09.005
Esenogho, I. D. Mienye, T. G. Swart, K. Aruleba, and G. Obaido, (2022) “A neural network ensemble with feature engineering for improved credit card Fraud detection,” IEEE Access, vol. 10, pp. 16400–16407, doi: 10.1109/ACCESS.2022.3148298.
Md Al-Imran, Eftekhar Hossain Ayon, Md Rashedul Islam, Fuad Mahmud, Sharmin Akter, Md Khorshed Alam, Md Tarek Hasan, Sadia Afrin, Jannatul Ferdous Shorna, & Md Munna Aziz. (2024). TRANSFORMING BANKING SECURITY: THE ROLE OF DEEP LEARNING IN FRAUD DETECTION SYSTEMS. The American Journal of Engineering and Technology, 6(11), 20–32. https://doi.org/10.37547/tajet/Volume06Issue11-04
Chen, L., & Zhang, J. (2022). Anomaly detection techniques for financial fraud prevention. Journal of Cybersecurity, 12(4), 223-238.
Hughes, S., & Huang, T. (2020). Reinforcement learning for fraud detection in banking transactions. Transactions on Artificial Intelligence, 21(5), 1209-1219
Lee, C., & Tan, Y. (2020). Evaluation of machine learning techniques in fraud detection systems. Journal of Machine Learning Research, 22(6), 1345-1360.
Aderibigbe, A. O., Ohenhen, P. E., Nwaobia, N. K., Gidiagba, J. O., & Ani, E. C. (2023). Artificial intelligence in developing countries: Bridging the gap between potential and implementation. Computer Science & IT Research Journal, 4(3), 185-199.
Mhlanga, D. Industry 4.0 in finance: The impact of artificial intelligence (ai) on digital financial inclusion. Int. J. Financ. Stud. 2020, 8, 45
Javaid, H. A. (2024). How Artificial Intelligence is Revolutionizing Fraud Detection in Financial Services. Innovative Engineering Sciences Journal, 4(1).https://innovatesci-publishers.com/index.php/IESJ/article/view/218
Thilagavathi, M., Saranyadevi, R., Vijayakumar, N., Selvi, K., Anitha, L., & Sudharson, K. (2024, April). AI-driven fraud detection in financial transactions with graph neural networks and anomaly detection. In 2024 International Conference on Science Technology Engineering and Management (ICSTEM) (pp. 1-6) https://ieeexplore.ieee.org/abstract/document/10560838
Hasan, I., & Rizvi, S. A. M. (2022). AI-driven fraud detection and mitigation in e-commerce transactions. In Proceedings of Data Analytics and Management: ICDAM 2021, Volume 1 (pp. 403-414). Springer Singapore.https://link.springer.com/chapter/10.1007/978-981-16-6289-8_34
Kindi, Al & Islam, Md Shakil & Rahman, Nayem. (2025). AI-Driven Fraud Detections in Financial Institutions: A Comprehensive Study. Journal of Computer Science and Technology Studies. 7. 10.32996/jcsts.2025.7.1.8.
Downloads
##submissions.published##
How to Cite
##issue.issue##
##section.section##
License
Copyright (c) 2025 Қозоқов Шаҳбоз Ортикбаевич

This work is licensed under a Creative Commons Attribution 4.0 International License.